Introduction of Steel Tube EN 10216-5 . Standard
Stainless steel seamless tubes to EN 10216-5 standard are tubes made from stainless steel materials that conform to the European standard EN 10216-5. This standard specifies the technical delivery conditions for seamless tubes made from austenitic and austenitic-ferritic stainless steels for use in high-temperature and high-pressure applications.
The stainless steel materials used in the manufacture of these tubes are chosen for their corrosion resistance, high temperature resistance, and strength. They are typically made from grades such as 1.4301 (304), 1.4401 (316), 1.4404 (316L), and 1.4462 (Duplex).
Stainless steel seamless tubes to EN 10216-5 standard are commonly used in industries such as petrochemical, chemical, and power generation, where they are used in applications such as heat exchangers, boilers, and pressure vessels. These tubes are known for their excellent corrosion resistance, which makes them ideal for use in environments where exposure to corrosive substances is common.
In summary, stainless steel seamless tubes to EN 10216-5 standard are high-quality tubes made from stainless steel materials that are designed to withstand high temperatures and pressures and offer excellent corrosion resistance.
Seamless steel tubes for pressure purposes: Stainless steel tubes | ||||||||||||||||||||||||
Foreword This document (EN 10216 -5:2004) has been prepared by Technical Committee ECISS/TC 29 "Steel tubes and fittings for steel tubes", the secretariat of which is held by UNI. This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by March 2005, and conflicting national standards shall be withdrawn at the latest by March 2005. This document has been prepared under a mandate given to CEN by the European Commission and the European Free Trade Association, and supports essential requirements of the EU Directive 97/23/EC. For relationship with the EU Directive 97/23/EC, see informative Annex ZA, which is an integral part of this document. Other parts of EN 10216 are: Part 1: Non-alloy steel tubes with specified room temperature properties; Part 2: Non-alloy and alloy steel tubes with specified elevated temperature properties; Part 3: Alloy fine grain steel tubes; Part 4: Non-alloy and alloy steel tubes with specified low temperature properties. Another European Standard series covering tubes for pressure purposes is: — EN 10217: Welded steel tubes for pressure purposes – Technical delivery conditions. |
||||||||||||||||||||||||
1 Scope This document specifies the technical delivery conditions in two test categories for seamless tubes of circular cross section made of austenitic (including creep resisting steel) and austenitic- ferritic stainless steel which are applied for pressure and corrosion resisting purposes at room temperature, at low temperatures or at elevated temperatures. |
||||||||||||||||||||||||
2 Normative references The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. The requirements of this part of EN 10216 rule when they differ from those in the standards and documents referred to below: EN 10002-1, Metallic materials – Tensile testing – Part 1: Method of test at ambient temperature. EN 10002-5, Metallic materials – Tensile testing – Part 5: Method of test at elevated temperatures. EN 10020:2000, Definition and classification of grades of steel. EN 10021:1993, General technical delivery conditions for steel and iron products. EN 10027-1, Designation systems for steels – Part 1: Steel names, principal symbols. EN 10027-2, Designation systems for steels – Part 2: Numerical systems. EN 10028-7, Flat products made of steels for pressure purposes – Part 7: Stainless steels. EN 10045-1, Metallic materials – Charpy impact test – Part 1: Test method. EN 10052:1993, Vocabulary of heat treatment terms for ferrous products. EN 10088-1, Stainless steels – Part 1: List of stainless steels. EN 10204, Metallic products – Types of inspection documents. EN 10233, Metallic materials – Tubes – Flattening test. EN 10234, Metallic materials – Tubes – Drift expanding test. EN 10236, Metallic materials – Tubes – Ring expanding test. EN 10237, Metallic materials – Tubes – Ring tensile test. EN 10246-2, Non-destructive testing of steel tubes – Part 2: Automatic eddy current testing of seamless and welded (except submerged arc-welded) austenitic and ferritic-austenitic steel tubes for verification of hydraulic leak tightness. EN 10246-6, Non- destructive testing of steel tubes – Part 6: Automatic full peripheral ultrasonic testing of seamless steel tubes for the detection of transverse imperfections. EN 10246-7, Non-destructive testing of steel tubes – Part 7: Automatic full peripheral ultrasonic testing of seamless and welded (except submerged arc welded) steel tubes for the detection of longitudinal imperfections. EN 10246-17, Non-destructive testing of steel tubes – Part 17: Ultrasonic testing of tube ends of seamless and welded steel tubes for detection of laminar imperfections. SAGAWEB pour : EDF R&D EDF Branche Energies le EN 10256, Non-destructive testing of steel tubes – Qualification and competence of level 1 and level 2 non-destructive testing personnel. EN 10168, Steel products – Inspection documents – List of information and description. EN 10266:2003, Steel tubes, fittings and structural hollow sections – Symbols and definitions of terms for use in product standards. EN ISO 377, Steel and steel products – Location and preparation of samples and test pieces for mechanical testing (ISO 377:1997). EN ISO 643, Steels – Micrographic determination of the apparent grain size (ISO 643:2003) EN ISO 1127, Stainless steel tubes – Dimensions, tolerances and conventional masses per unit length (ISO 1127:1992). EN ISO 2566-2, Steel – Conversion of elongation values – Part 2: Austenitic steels (ISO 2566-2:1984). EN ISO 3651-2, Determination of resistance to intergranular corrosion of stainless steels – Part 2: Ferritic, austenitic and ferritic-austenitic (duplex) stainless steels – Corrosion test in media containing sulfuric acid (ISO 3651.2:1998). EN ISO 14284, Steel and iron – Sampling and preparation of samples for the determination of the chemical composition (ISO 14284:1996). CR 10260, Designation systems for steel – Additional symbols. CR 10261, ECISS Information Circular 11 – Iron and steel – Review of available methods of chemical analysis. |
||||||||||||||||||||||||
3 Terms and definitions For the purposes of this document, the terms and definitions given in EN 10020:2000, EN 10021:1993, EN 10052:1993 and EN 10266:2003 together with the following apply. 3.1 test category classification that indicates the extent and level of inspection and testing 3.2 employer organization for which a person works on a regular basis NOTE The employer may be either the tube manufacturer or supplier or a third party organization providing Non-Destructive Testing (NDT) services |
||||||||||||||||||||||||
4 Symbols For the purposes of this document, the symbols given in EN 10266 and the following apply: TC test category NOTE See also Table 1 for symbols of the delivery condition. 5 Classification and designation 5.1 Classification According to the classification system in EN 10020, the steel grades are classified as: austenitic steels (corrosion resisting or creep resisting steels); austenitic-ferritic steels. For more details see EN 10088-1. 5.2 Designation For the tubes covered by this part of EN 10216 the steel designation consists of: number of this part of EN 10216 (EN 10216-5); plus either: steel name in accordance with EN 10027-1 and CR 10260; or: steel number allocated in accordance with EN 10027-2. |
||||||||||||||||||||||||
6 Information to be supplied by the purchaser 6.1 Mandatory information The following information shall be supplied by the purchaser at the time of enquiry and order: a) quantity (mass or total length or number); b) term "tube"; c) dimensions (outside diameter D and wall thickness T) (see 8.8.1); d) designation of the steel grade according to this part of EN 10216 (see 5.2); e) test category (see 9.3). 6.2 Options A number of options are specified in this part of EN 10216 and these are listed below. In the event that the purchaser does not indicate a wish to implement any of these options at the time of enquiry and order, the tube shall be supplied in accordance with the basic specification (see 6.1). 1. Information about steelmaking process (see 7.1). 2. Delivery condition (see 7.2.4). 3. Specified range for sulphur content (see Table 2, footnote b). 4. Product analysis (see 8.2.2). 5. Additional mechanical tests on samples which have undergone a different or additional heat treatment (see 8.3.1). 6. Impact test at room temperature (see 8.3.1). 7. Agreed mechanical properties at room temperature for austenitic corrosion resisting steel tubes with wall thicknesses greater than 60 mm (see Table 6, footnote a). 8. Agreed mechanical properties at room temperature for austenitic creep resisting steel tubes with wall thicknesses greater than 50 mm (see Table 7, footnote a). 9. Verification of proof strength Rp0,2 or Rp1,0 at elevated temperatures (see 8.3.2.1). 10. Agreed proof strength values at elevated temperatures for austenitic corrosion resisting steel tubes with wall thicknesses greater than 60 mm (see Table 9, footnote a). 11. Impact test at low temperature (see 8.3.3). 12. Intergranular corrosion test (see 8.4). 13. Selection of leak-tightness test method (see 8.5.2.1). 14. Non-destructive testing for test category 2 tubes with specified outside diameter less than or equal to 101,6 mm and specified wall thickness less than or equal to 5,6 mm for detection of longitudinal imperfections (see 8.5.2.2). 15. Non-destructive testing for test category 2 tubes for detection of transverse imperfections (see 8.5.2.2). 16. Non-destructive testing for test category 2 tubes with specified wall thickness greater than 40 mm for detection of laminar imperfections at tube ends (see 8.5.2.2). 17. Special ends preparation (see 8.7). 18. Exact lengths (see 8.8.3). 19. Sized tube ends for tube of D > 219,1 mm (see Table 12). 20. Tolerance classes D 4 and T 4 for tubes ordered cold finished (see Table 13). 21. Type of inspection document other than the standard document (see 9.2.1). 22. Test pressure for hydrostatic leak-tightness test (see 11.6.1). 23. Wall thickness measurement away from the ends (see 11.7). 24. Additional marking (see 12.2). 25. Special protection (see 13). 6.3 Examples of an order 6.3.1 Example 1 2 000 m of hot finished descaled seamless tube with an outside diameter of 168,3 mm, a wall thickness of 4,5 mm, in accordance with this part of EN 10216, tolerance classes D 2 and T 2, made of steel grade X2CrNi19-11, to test category 1, with a 3.1.B inspection certificate in accordance with EN 10204: 2 000 m – HFD Tube – 168,3 X 4,5 – EN 10216-5 – X2CrNi19-11 – TC 1 6.3.2 Example 2 300 m of cold finished descaled seamless tube with an outside diameter of 42,4 mm, a wall thickness of 2,6 mm, in accordance with this part EN 10216, tolerance classes D 3 and T 3, made of steel grade 1.4301, to test category 2, with intergranular corrosion test (EN ISO 3651-2, method A), verification of proof strength at 300 °C, non-destructive testing for detection of longitudinal and transverse imperfections, with a 3.2 inspection certificate in accordance with EN 10204: 300 m – CFD Tube – 42,4 X 2,6 – EN 10216-5 – 1.4301 – TC 2 – Option 9: 300 °C – Option 12: A – Option 14 – Option 15 – Option 21: 3.2 |
||||||||||||||||||||||||
7 Manufacturing process 7.1 Steelmaking process The steelmaking process is at the discretion of the manufacturer, but see option 1. Option 1: The purchaser shall be informed about the steelmaking process used. The process shall be reported in the inspection document. 7.2 Tube manufacture and delivery conditions 7.2.1 All NDT activities shall be carried out by qualified and competent level 1, 2 and/or 3 personnel authorised to operate by the employer. The qualification shall be in accordance with EN 10256 or, at least, an equivalent to it. It is recommended that the level 3 personnel be certified in accordance to EN 473 or, at least an equivalent to it. The operating authorisation issued by the employer shall be in accordance with a written procedure. NDT operations shall be authorised by a level 3 NDT individual approved by the employer. NOTE The definition of level 1, 2 and 3 can be found in appropriate standards, e.g. EN 473 and EN 10256. 7.2.2 The tubes shall be manufactured by a seamless process, and may be hot finished or cold finished. The terms “ hot finished “ and “ cold finished “ apply to the condition of the tube before it is heat treated in accordance with 7.2.3. The process of manufacture is left to the discretion of the manufacturer, but see option 2. 7.2.3 The tubes shall be supplied in the solution annealed condition over their full length in either: reference heat treatment conditions; solution annealed conditions obtained directly by extrusion and subsequent cooling provided the mechanical properties, corrosion resistance and other properties are in accordance with this part of EN 10216. All specified mechanical properties shall be met even after a subsequent reference heat treatment. Solution treatment shall consist of heating the tubes uniformly to a temperature within the range given for the steel grade concerned in Tables 6, 7 and 8 and cooling rapidly. 7.2.4 The types of delivery condition of the tubes are given in Table 1. Unless option 2 is specified, the type of delivery condition is at the discretion of the manufacturer. Option 2: The delivery condition is specified by the purchaser. |
||||||||||||||||||||||||
Table 1 — Delivery conditions a | ||||||||||||||||||||||||
Symbol b | Type of delivery condition | Surface condition | ||||||||||||||||||||||
HFD | Hot finished heat treated, descaled | Metallically clean | ||||||||||||||||||||||
CFD | Cold finished heat treated, descaled | Metallically clean | ||||||||||||||||||||||
CFA | Cold finished bright annealed | Metallically bright | ||||||||||||||||||||||
CFG | Cold finished heat treated, ground | Metallically bright-ground, the type and degree of roughness shall be agreed at the time of enquiry and order c | ||||||||||||||||||||||
CFP | Cold finished heat treated, polished | Metallically bright-polished, the type and degree of roughness shall be agreed at the time of enquiry and order c | ||||||||||||||||||||||
a Combinations of the different conditions may be agreed at the time of enquiry and order. b The symbols are abbreviations for type of condition. Example: CFD = Cold Finished Descaled. c The enquiry and the order shall indicate whether the roughness requirement applies on the internal or external tube surface, or internal and external. |
||||||||||||||||||||||||
8 Requirements 8.1 General When supplied in a delivery condition indicated in 7.2.4 and inspected in accordance with clauses 9, 10 and 11, the tubes shall conform to the requirements of this part of EN 10216. In addition, the general technical delivery requirements specified in EN 10021 shall apply. 8.2 Chemical composition 8.2.1 Cast analysis The cast analysis reported by the steel manufacturer shall apply and conform to the requirements of Tables 2 or 3 for austenitic steels and of Table 4 for austenitic-ferritic steels. Option 3: (see Table 2). NOTE When welding tubes produced in accordance with this part of EN 10216, account should be taken to the fact that the behaviour of the steel during and after welding is dependent not only on the steel, but also on the applied heat treatment and the conditions of preparing for and carrying out the welding. 8.2.2 Product analysis Option 4: Product analysis for the tubes shall be supplied. Table 5 specifies the permissible deviation of the product analysis from the specified limits on cast analysis given in Tables 2, 3 and 4. |
||||||||||||||||||||||||
Table 2 — Chemical composition (cast analysis) a of austenitic corrosion resisting steels, in % by mass (continued) | ||||||||||||||||||||||||
Steel grade | C max | Si | Mn | P max | S max | N | Cr | Cu | Mo | Nb | Ni | Ti | Others | |||||||||||
Steel name | Steel number | |||||||||||||||||||||||
X2CrNi18-9 | 1.4307 | 0,030 | ≤ 1,00 | ≤ 2,00 | 0,040 | 0,015b | ≤ 0,11 | 17,50 to 19,50 | _ | _ | _ | 8,00 to 10,00c | _ | _ | ||||||||||
X2CrNi19-11 | 1.4306 | 0,030 | ≤ 1,00 | ≤ 2,00 | 0,040 | 0,015b | ≤ 0,11 | 18,00 to 20,00 | _ | _ | _ | 10,00 to 12,00d | _ | _ | ||||||||||
X2CrNiN18-10 | 1.4311 | 0,030 | ≤ 1,00 | ≤ 2,00 | 0,040 | 0,015 | 0,12 to 0,22 | 17,00 to 19,50 | _ | _ | _ | 8,50 to 11,50 | _ | _ | ||||||||||
X5CrNi18-10 | 1.4301 | 0,07 | ≤ 1,00 | ≤ 2,00 | 0,040 | 0,015b | ≤ 0,11 | 17,00 to 19,50 | _ | _ | _ | 8,00 to 10,50 | _ | _ | ||||||||||
X6CrNiTi18-10 | 1.4541 | 0,08 | ≤ 1,00 | ≤ 2,00 | 0,040 | 0,015 | _ | 17,00 to 19,00 | _ | _ | _ | 9,00 to 12,00d | 5xC to 0,70 | _ | ||||||||||
X6CrNiNb18-10 | 1.455 | 0,08 | ≤ 1,00 | ≤ 2,00 | 0,040 | 0,015 | _ | 17,00 to 19,00 | _ | _ | 10xC to 1,00 | 9,00 to 12,00d | _ | _ | ||||||||||
X1CrNi25-21 | 1.4335 | 0,020 | ≤ 0,25 | ≤ 2,00 | 0,025 | 0,010 | ≤ 0,11 | 24,00 to 26,00 | _ | ≤ 0,20 | _ | 20,00 to 22,00 | _ | _ | ||||||||||
X2CrNiMo17-12-2 | 1.4404 | 0,030 | ≤ 1,00 | ≤ 2,00 | 0,040 | 0,015b | ≤ 0,11 | 16,50 to 18,50 | _ | 2,00 to 2,50 | _ | 10,00 to 13,00e | _ | _ | ||||||||||
X5CrNiMo17-12-2 | 1.4401 | 0,07 | ≤ 1,00 | ≤ 2,00 | 0,040 | 0,015b | ≤ 0,11 | 16,50 to 18,50 | _ | 2,00 to 2,50 | _ | 10,00 to 13,00 | _ | _ | ||||||||||
X1CrNiMoN25-22-2 | 1.4466 | 0,020 | ≤ 0,70 | ≤ 2,00 | 0,025 | 0,010 | 0,10 to 0,16 | 24,00 to 26,00 | _ | 2,00 to 2,50 | _ | 21,00 to 23,00 | _ | _ | ||||||||||
X6CrNiMoTi17-12-2 | 1.4571 | 0,08 | ≤ 1,00 | ≤ 2,00 | 0,040 | 0,015b | _ | 16,50 to 18,50 | _ | 2,00 to 2,50 | _ | 10,50 to 13,50c | 5xC to 0,70 | _ | ||||||||||
X6CrNiMoNb17-12-2 | 1.458 | 0,08 | ≤ 1,00 | ≤ 2,00 | 0,040 | 0,015 | _ | 16,50 to 18,50 | _ | 2,00 to 2,50 | 10xC to 1,00 | 10,50 to 13,50 | _ | _ | ||||||||||
X2CrNiMoN17-13-3 | 1.4429 | 0,030 | ≤ 1,00 | ≤ 2,00 | 0,040 | 0,015 | 0,12 to 0,22 | 16,50 to 18,50 | _ | 2,50 to 3,00 | _ | 11,00 to 14,00d | _ | _ | ||||||||||
X3CrNiMo17-13-3 | 1.4436 | 0,05 | ≤ 1,00 | ≤ 2,00 | 0,040 | 0,015b | ≤ 0,11 | 16,50 to 18,50 | _ | 2,50 to 3,00 | _ | 10,50 to 13,00d | _ | _ | ||||||||||
X2CrNiMo18-14-3 | 1.4435 | 0,030 | ≤ 1,00 | ≤ 2,00 | 0,040 | 0,015b | ≤ 0,11 | 17,00 to 19,00 | _ | 2,50 to 3,00 | _ | 12,50 to 15,00 | _ | _ | ||||||||||
X2CrNiMoN17-13-5 | 1.4439 | 0,030 | ≤ 1,00 | ≤ 2,00 | 0,040 | 0,015 | 0,12 to 0,22 | 16,50 to 18,50 | _ | 4,00 to 5,00 | _ | 12,50 to 14,50 | _ | _ | ||||||||||
X1NiCrMoCu31-27-4 | 1.4563 | 0,020 | ≤ 0,70 | ≤ 2,00 | 0,030 | 0,010 | ≤ 0,11 | 26,00 to 28,00 | 0,70 to 1,50 | 3,00 to 4,00 | _ | 30,00 to 32,00 | _ | _ | ||||||||||
X1NiCrMoCu25-20-5 | 1.4539 | 0,020 | ≤ 0,70 | ≤ 2,00 | 0,030 | 0,010 | ≤ 0,15 | 19,00 to 21,00 | 1,20 to 2,00 | 4,00 to 5,00 | _ | 24,00 to 26,00 | _ | _ | ||||||||||
X1CrNiMoCuN20-18-7 | 1.4547 | 0,020 | ≤ 0,70 | ≤ 1,00 | 0,030 | 0,010 | 0,18 to 0,25 | 19,50 to 20,50 | 0,50 to 1,00 | 6,00 to 7.00 | _ | 17.50 to 18,50 | _ | _ | ||||||||||
X1NiCrMoCuN25-20-7 | 1.4529 | 0,020 | ≤ 0,50 | ≤ 1,00 | 0,030 | 0,010 | 0,15 to 0,25 | 19,00 to 21,00 | 0,50 to 1,50 | 6,00 to 7,00 | _ | 24,00 to 26,00 | _ | _ | ||||||||||
X2NiCrAlTi32-20 | 1.4558 | 0,030 | ≤ 0,70 | ≤ 1,00 | 0,020 | 0,015 | _ | 20,00 to 23,00 | _ | _ | _ | 32,00 to 35,00 | 8X(C+N) to 0,60 | Al: 0,15 to 0,45 | ||||||||||
a Elements not listed in this table shall not be intentionally added to the steel without the agreement of the purchaser except for finishing the cast. All appropriate precautions are to be taken to avoid the addition of such elements from scrap and other materials used in production which would impair mechanical properties and the suitability of the steel. b For products to be machined a controlled sulphur content of 0,015 % to 0,030 % is permitted by agreement provided the resistance to corrosion is still satisfied for the intended purpose. Option 3: A sulphur content of 0,015 % to 0,030 % is specified. c Where for special reasons, e.g. hot workability it is necessary to minimize the deltaferrite content, or with the aim of low permeability, the maximum nickel content may be increased by 0,50 %. d Where for special reasons, e.g. hot workability it is necessary to minimize the deltaferrite content, or with the aim of low permeability, the maximum nickel content may be increased by 1,00 %. e Where for special reasons, e.g. hot workability it is necessary to minimize the deltaferrite content, or with the aim of low permeability, the maximum nickel content may be increased by 1,50 %. |
||||||||||||||||||||||||
Table 3 – Chemical composition (cast analysis) a of austenitic creep resisting steels, in % by mass | ||||||||||||||||||||||||
Steel grade | C | Si | Mn | P max | S max | N | Cr | Cu | Mo | Nb | Ni | Ti | Others | |||||||||||
Steel name | Steel number | |||||||||||||||||||||||
X6CrNi18-10 | 1.4948 | 0,04 to 0,08 | ≤ 1,00 | ≤ 2,00 | 0,035 | 0,015 | ≤ 0,11 | 17,00 to 19,00 | – | – | – | 8,00 to 11,00 | – | – | ||||||||||
X7CrNiTi18-10 | 1.494 | 0,04 to 0,08 | ≤ 1,00 | ≤2,00 | 0,040 | 0,015 | ≤ 0,11 | 17,00 to 19,00 | – | – | – | 9,00 to13,00 | 5x(C+N)to 0,80 | |||||||||||
X7CrNiNb18-10 | 1.4912 | 0,04 to 0,1 | ≤ 1,00 | ≤ 2,00 | 0,040 | 0,015 | ≤ 0,11 | 17,00 to 19,00 | – | – | 10xC to 1,20 | 9,00 to 12,00 | ||||||||||||
X6CrNiTiB18-10 | 1.4941 | 0,04 to 0,08 | ≤ 1,00 | ≤ 2,00 | 0,035 | 0,015 | – | 17,00 to 19,00 | – | – | – | 9,00 to12,00 | 5xC to0,80 | B: 0,0015 to 0,0050 | ||||||||||
X6CrNiMo17-13-2 | 1.4918 | 0,04 to 0,08 | ≤ 0,75 | ≤ 2,00 | 0,035 | 0,015 | ≤ 0,11 | 16,00 to 18,00 | – | 2,00 to 2,50 | 12,00 to14,00 | – | – | |||||||||||
X5NiCrAlTi31-20 (+RA) b | 1.4958(+RA) | 0,03 to 0,08 | ≤ 0,70 | ≤ 1,50 | 0,015 | 0,010 | – | 19,00 to 22,00 | ≤ 0,50 | – | ≤ 0,10 | 30,00 to32,50 | 0,20 to0,50 |
Al: 0,20 to 0,50 Al+Ti: ≤ 0,70 Co: ≤ 0,5Ni+Co = 30,0 to 32,5 |
||||||||||
X8NiCrAlTi32-21 | 1.4959 | 0,05 to 0,10 | ≤ 0,70 | ≤ 1,50 | 0,015 | 0,010 | – | 19,00 to 22,00 | ≤ 0,50 | – | – | 30,00 to34,00 | 0,25 to 0,65 | Al: 0,20 to 0,65 | ||||||||||
X3CrNiMoBN17-13-3 | 1.491 | ≤ 0,04 | ≤ 0, 75 | ≤ 2,00 | 0,035 | 0,015 | 0,10 to 0,18 | 16,00 to 18,00 | – | 2,00 to 3,00 | – | 12,00 to14,00 | – | B: 0,0015 to 0,0050 | ||||||||||
X8CrNiNb16-13 | 1.4961 | 0,04 to 0,10 | 0,30 to 0,60 | ≤ 1,50 | 0,035 | 0,015 | – | 15,00 to 17,00 | – | – | 10xC to 1,20 | 12,00 to14,00 | – | – | ||||||||||
X8CrNiMoVNb16-13 | 1.4988 | 0,04 to 0,10 | 0,30 to 0,60 | ≤ 1,50 | 0,035 | 0,015 | 0,06 to 0,14 | 15,50 to 17,50 | – | 1,10 to 1,50 | 10xC to 1,20 | 12,50 to14,50 | – | V: 0,60 to 0,85 | ||||||||||
X8CrNiMoNb16-16 | 1.4981 | 0,04 to 0,10 | 0,30 to 0,60 | ≤ 1,50 | 0,035 | 0,015 | – | 15,50 to 17,50 | – | 1,60 to 2,00 | 10xC to 1,20c | 15,50 to17,50 | – | – | ||||||||||
X10CrNiMoMnNbVB15-10-1 | 1.4982 | 0,06 to 0,15 | 0,20 to 1,00 | 5,50 to 7,00 | 0,035 | 0,015 | – | 14,00 to 16,00 | – | 0,80 to 1,20 | 0,75 to 1,25 | 9,00 to11,00 | – |
V: 0,15 to 0,40 B 0,003 to 0,009 |
||||||||||
a Elements not listed in this table shall not be intentionally added to the steel without the agreement of the purchaser except for finishing the cast. All appropriate precautions are to be taken to avoid the addition of such elements from scrap and other materials used in production which would impair mechanical properties and the suitability of the steel. b Recrystallizing annealed condition. c Including Ta. |
||||||||||||||||||||||||
Table 4 – Chemical composition (cast analysis) a of austenitic-ferritic steels, in % by mass | ||||||||||||||||||||||||
Steel grade | C | Si | Mn | Pmax | Smax | N | Cr | Cu | Mo | Ni | Others | |||||||||||||
Steel name | Steel number | |||||||||||||||||||||||
X2CrNiMoN22-5-3 | 1.4462 | 0,030 | ≤ 1,00 | ≤ 2,00 | 0,035 | 0,015 | 0,10 to 0,22 | 21,00 to 23,00 | _ | 2,50 to 3,50 | 4,50 to 6,50 | _ | ||||||||||||
X2CrNiMoSi18-5-3 | 1.4424 | 0,030 | 1,40 to 2,00 | 1,20 to 2,00 | 0,035 | 0,015 | 0,05 to 0,10 | 18,00 to 19,00 | _ | 2,50 to 3,00 | 4,50 to 5,20 | _ | ||||||||||||
X2CrNiN23-4 b | 1.4362 | 0,030 | ≤ 1,00 | ≤ 2,00 | 0,035 | 0,015 | 0,05 to 0,20 | 22,00 to 24,00 | 0,10 to 0,60 | 0,10 to 0,60 | 3,50 to 5,50 | _ | ||||||||||||
X2CrNiMoN25-7-4 b | 1.441 | 0,030 | ≤ 1,00 | ≤ 2,00 | 0,035 | 0,015 | 0,20 to 0,35 | 24,00 to 26,00 | _ | 3,00 to 4,50 | 6,00 to 8,00 | _ | ||||||||||||
X2CrNiMoCuN25-6-3 | 1.4507 | 0,030 | ≤ 0,70 | ≤ 2,00 | 0,035 | 0,015 | 0,15 to 0,30 | 24,00 to 26,00 | 1,00 to 2,50 | 2,70 to 4,00 | 5,50 to 7,50 | _ | ||||||||||||
X2CrNiMoCuWN25-7-4 | 1.4501 | 0,030 | ≤ 1,00 | ≤ 1,00 | 0,035 | 0,015 | 0,20 to 0,30 | 24,00 to 26,00 | 0,50 to 1,00 | 3,00 to4,00 | 6,00 to 8,00 | W: 0,50 to 1,00 | ||||||||||||
Table 5 – Permissible deviations of the product analysis from specified limits on cast analysis given in Tables 2, 3 and 4 | ||||||||||||||||||||||||
Element | Limiting value for the cast analysis according to Tables 2, 3 and 4 % by mass | Permissible deviation of the product analysis a % by mass | ||||||||||||||||||||||
Carbon | ≤ 0,030 | + 0,005 | ||||||||||||||||||||||
> 0,030 ≤ 0,15 | ± 0,01 | |||||||||||||||||||||||
Silicon | ≤ 2,00 | ± 0,05 | ||||||||||||||||||||||
Manganese | ≤ 1,00 | + 0,03 | ||||||||||||||||||||||
> 1,00 ≤ 2,00 | ± 0,04 | |||||||||||||||||||||||
> 2,00 ≤ 7,00 | ± 0,10 | |||||||||||||||||||||||
Phosphorus | ≤ 0,030 | + 0,003 | ||||||||||||||||||||||
> 0,030 ≤ 0,040 | + 0,005 | |||||||||||||||||||||||
Sulphur | ≤ 0,015 | + 0,003 | ||||||||||||||||||||||
> 0,015 ≤ 0,030 | +0,005 | |||||||||||||||||||||||
Nitrogen | ≤ 0,35 | ± 0,01 | ||||||||||||||||||||||
Aluminium | ≤ 0,65 | ± 0,10 | ||||||||||||||||||||||
Boron | ≥0,001 5 ≤ 0,009 0 | ± 0,0003 | ||||||||||||||||||||||
Chromium | > 14,00 ≤ 20,00 | ± 0,20 | ||||||||||||||||||||||
>20,00 ≤ 28,00 | ± 0,25 | |||||||||||||||||||||||
Cobalt | ≤ 0,50 | + 0,10 | ||||||||||||||||||||||
Copper | ≤ 1,00 | ± 0,07 | ||||||||||||||||||||||
> 1,00 ≤ 2,50 | ± 0,10 | |||||||||||||||||||||||
Molybdenum | ≤ 0,60 | ± 0,03 | ||||||||||||||||||||||
> 0,60 ≤ 1,75 | ± 0,05 | |||||||||||||||||||||||
> 1,75 ≤ 7,00 | ± 0,10 | |||||||||||||||||||||||
Niobium | ≤ 1,25 | ± 0,05 | ||||||||||||||||||||||
Nickel | > 3,50 ≤ 5,00 | ± 0,07 | ||||||||||||||||||||||
> 5,00 ≤ 10,00 | ± 0,10 | |||||||||||||||||||||||
> 10,00 ≤ 20,00 | ± 0,15 | |||||||||||||||||||||||
>20,00 ≤35,00 | ± 0,20 | |||||||||||||||||||||||
Titanium | ≤ 0,80 | ± 0,05 | ||||||||||||||||||||||
Vanadium | ≤ 0,85 | ± 0,03 | ||||||||||||||||||||||
Tungsten | ≤ 1,00 | ± 0,05 | ||||||||||||||||||||||
a If several product analyses are carried out on one cast, and the contents of an individual element determined lie outside the permissible range of the chemical composition specified for the cast analysis, then it is only allowed to exceed the permissible maximum value or to fall short of the permissible minimum value, but not both for one cast. |
||||||||||||||||||||||||
8.3 Mechanical properties 8.3.1 At room temperature The mechanical properties of the tubes at room temperature shall conform to the relevant requirements in Tables 6, 7 and 8 and in clause 11. If heat treatments different from, or additional to, the reference heat treatment are to be carried out after the delivery of the tubes, the purchaser may request, at the time of enquiry and order, additional mechanical tests on samples, that have been given heat treatments different from or additional to, those given in Tables 6, 7 and 8. The heat treatment of the samples and the mechanical properties to be obtained from tests on them shall be agreed between the purchaser and the manufacturer at the time of enquiry and order. Option 5: Additional mechanical tests on samples which have undergone a different or additional heat treatment shall be carried out. Option 6: Impact test shall be carried out at room temperature (see Tables 6, 7 and 8). Option 7: (see Table 6, footnote a). Option 8: (see Table 7, footnote a). 8.3.2 At elevated temperature 8.3.2.1 Proof strength The minimum proof strength Rp0,2 and Rp1,0 values at elevated temperatures are specified in Tables 9, 10 and 11. Option 9: Proof strength Rp0,2 or Rp1,0 (for austenitic-ferritic steels in Table 11 only Rp0,2 apply) shall be verified. The test temperature shall be agreed at the time of enquiry and order. Option 10: (see Table 9, footnote a). 8.3.2.2 Creep rupture strength Annex A gives mean values as preliminary data about creep rupture strength. NOTE Steel grades not mentioned in Table A.1 are not intended for use in the creep range. 8.3.3 At low temperature Impact energy values at specified low temperature shall conform to the requirements in Tables 6 and 8. Option 11: Impact test at low temperature shall be carried out. |
||||||||||||||||||||||||
Table 6 – Mechanical properties for wall thicknesses up to 60 mm a of austenitic corrosion resisting steels in the solution annealed condition (+AT) and information about intergranular corrosion (continued) b | ||||||||||||||||||||||||
Steel grade | Tensile properties at room temperature c | Impact properties c | Reference heat treatment conditions | Resistance to intergranular corrosion | ||||||||||||||||||||
Proof strength | Minimum average absorbed energy KVJ | |||||||||||||||||||||||
Rp0,2 min | Rp1,0 min | Tensile strength Rm | Elongation A min (%) | at RT | at -196°C | Solution temperature d °C | Cooling in e | f | Method in EN ISO 3651-2 | |||||||||||||||
Steel name | Steel number | MPa | MPa | MPa | l | t | l | t | t | |||||||||||||||
X2CrNi18-9 | 1.4307 | 180 | 215 | 460 to 680 | 40 | 35 | 100 | 60 | 60 | 1 000 to 1 100 | w, a | yes | A | |||||||||||
X2CrNi19-11 | 1.4306 | 180 | 215 | 460 to 680 | 40 | 35 | 100 | 60 | 60 | 1 000 to 1 100 | w, a | yes | A | |||||||||||
X2CrNiN18-10 | 1.4311 | 270 | 305 | 550 to 760 | 35 | 30 | 100 | 60 | 60 | 1 000 to 1 100 | w, a | yes | A | |||||||||||
X5CrNi18-10 | 1.4301 | 195 | 230 | 500 to 700 | 40 | 35 | 100 | 60 | 60 | 1 000 to 1 100 | w, a | yes g | A | |||||||||||
X6CrNiTi18-10 (cold finish) | 1.4541 | 200 | 235 | 500 to 730 | 35 | 30 | 100 | 60 | 60 | 1 020 to 1 120 | w, a | yes | A | |||||||||||
X6CrNiTi18-10 (hot finish) | 1.4541 | 180 | 215 | 460 to 680 | 35 | 30 | 100 | 60 | 60 | 1 020 to 1 120 | w, a | yes | A | |||||||||||
X6CrNiNb18-10 | 1.455 | 205 | 240 | 510 to 740 | 35 | 30 | 100 | 60 | 60 | 1 020 to 1 120 | w, a | yes | A | |||||||||||
X1CrNi25-21 | 1.4335 | 180 | 210 | 470 to 670 | 45 | 40 | 100 | 60 | 60 | 1 030 to 1 110 | w, a | yes | A | |||||||||||
X2CrNiMo17-12-2 | 1.4404 | 190 | 225 | 490 to 690 | 40 | 30 | 100 | 60 | 60 | 1 020 to 1 120 | w, a | yes | A | |||||||||||
X5CrNiMo17-12-2 | 1.4401 | 205 | 240 | 510 to 710 | 40 | 30 | 100 | 60 | 60 | 1 020 to 1 120 | w, a | yes g | A | |||||||||||
X1CrNiMoN25-22-2 | 1.4466 | 260 | 295 | 540 to 740 | 40 | 30 | 100 | 60 | 60 | 1 070 to 1 150 | w, a | yes | A or B | |||||||||||
X6CrNiMoTi17-12-2 (cold finish) | 1.4571 | 210 | 245 | 500 to 730 | 35 | 30 | 100 | 60 | – | 1 020 to 1 120 | w, a | yes | A | |||||||||||
X6CrNiMoTi17-12-2 (hot finish) | 1.4571 | 190 | 225 | 490 to 690 | 35 | 30 | 100 | 60 | 60 | 1 020 to 1 120 | w, a | yes | A | |||||||||||
X6CrNiMoNb17-12-2 | 1.458 | 215 | 250 | 510 to 740 | 35 | 30 | 100 | 60 | – | 1 020 to 1 120 | w, a | yes | A | |||||||||||
X2CrNiMoN17-13-3 | 1.4429 | 295 | 330 | 580 to 800 | 35 | 30 | 100 | 60 | 60 | 1 020 to 1 120 | w, a | yes | A | |||||||||||
X3CrNiMo17-13-3 | 1.4436 | 205 | 240 | 510 to 710 | 40 | 30 | 100 | 60 | 60 | 1 020 to 1 120 | w, a | yes g | A | |||||||||||
X2CrNiMo18-14-3 | 1.4435 | 190 | 225 | 490 to 690 | 40 | 30 | 100 | 60 | 60 | 1 020 to 1 120 | w, a | yes | A | |||||||||||
X2CrNiMoN17-13-5 | 1.4439 | 285 | 315 | 580 to 800 | 35 | 30 | 100 | 60 | 60 | 1 060 to 1 140 | w, a | yes | A | |||||||||||
X1NiCrMoCu31-27-4 | 1.4563 | 215 | 245 | 500 to 750 | 40 | 35 | 120 | 90 | 60 | 1 070 to 1 150 | w, a | yes | B or C | |||||||||||
X1NiCrMoCu25-20-5 | 1.4539 | 230 | 250 | 520 to 720 | 35 | 30 | 120 | 90 | 60 | 1 060 to 1 140 | w, a | yes | C | |||||||||||
X1CrNiMoCuN20-18-7 | 1.4547 | 300 | 340 | 650 to 850 | 35 | 30 | 100 | 60 | 60 | 1 140 to 1 200 | w, a | yes | C | |||||||||||
X1NiCrMoCuN25-20-7 | 1.4529 | 270 | 310 | 600 to 800 | 35 | 30 | 100 | 60 | 60 | 1 120 to 1 180 | w, a | yes | C | |||||||||||
X2NiCrAlTi32-20 | 1.4558 | 180 | 210 | 450 to 700 | 35 | 30 | 120 | 90 | 60 | 950 to 1 050 | w, a | yes | A | |||||||||||
a For wall thicknesses greater than 60 mm the mechanical properties are subject to agreement at the time of enquiry and order. Option 7: Agreed mechanical properties for wall thicknesses greater than 60 mm apply. b Inspection and testing to be carried out are summarised in Table 15. c l = longitudinal; t = transverse. d The maximum temperatures are for guidance only. e w = water; a = air; cooling sufficiently rapid. f When tested according to EN ISO 3651-2 (Appropriate method, A or B or C, as indicated) up to the limit temperatures indicated in the last column of Table 9. g In delivery condition. (Normally not fulfilled in the sensitized condition). |
||||||||||||||||||||||||
Table 7 – Mechanical properties for wall thicknesses up to 50 mm a of austenitic creep resisting steels in the solution annealed condition (+AT) and information about intergranular corrosion b | ||||||||||||||||||||||||
Steel grade | Tensile properties at room temperature c | Impact properties at room temperature c | Reference heat treatment conditions | Resistance to intergranular corrosion | ||||||||||||||||||||
Proof strength |
Tensile strength Rm |
Elongation A min (%) |
Minimum average absorbed energy KVJ | Solution temperature d °C | Cooling in e | f |
Method in EN ISO 3651-2 |
|||||||||||||||||
Rp0,2min | Rp1,0min | |||||||||||||||||||||||
Steel name | Steel number | MPa | MPa | MPa | l | t | l | t | ||||||||||||||||
X6CrNi18-10 | 1.4948 | 185 | 225 | 500 to 700 | 40 | 30 | 100 | 60 | 1 000 to 1 080 | w, a | no | A | ||||||||||||
X7CrNiTi18-10 | 1.494 | 190 | 220 | 510 to 710 | 35 | 30 | 100 | 60 | 1 100 to 1 150 | w, a | no | A | ||||||||||||
X7CrNiNb18-10 | 1.4912 | 205 | 240 | 510 to 710 | 40 | 30 | 100 | 60 | 1 070 to 1 125 | w, a | no | A | ||||||||||||
X6CrNiTiB18-10 | 1.4941 | 195 | 235 | 490 to 680 | 35 | 30 | 100 | 60 | 1 070 to 1 150 | w, a | no | A | ||||||||||||
X6CrNiMo17-13-2 | 1.4918 | 205 | 245 | 490 to 690 | 35 | 30 | 100 | 60 | 1 020 to 1 100 | w, a | no | A | ||||||||||||
X5NiCrAlTi31-20 | 1.4958 | 170 | 200 | 500 to 750 | 35 | 30 | 120 | 80 | 1 150 to 1 200 | w, a | no | A | ||||||||||||
X5NiCrAlTi31-20 + RA | 1.4958+RA | 210 | 240 | 500 to 750 | 35 | 30 | 120 | 80 | 920 to 1 000 g | w,a | no | A | ||||||||||||
X8NiCrAlTi32-21 | 1.4959 | 170 | 200 | 500 to 750 | 35 | 30 | 120 | 80 | 1 150 to 1 200 h | w, a | no | A | ||||||||||||
X3CrNiMoBN17-13-3 | 1.491 | 260 | 300 | 550 to 750 | 35 | 30 | 120 | 80 | 1 020 to 1 100 | w, a | no | A | ||||||||||||
X8CrNiNb16-13 | 1.4961 | 205 | 245 | 510 to 690 | 35 | 22 | 100 | 60 | 1 050 to 1 100 | w, a | no | A | ||||||||||||
X8CrNiMoVNb16-13 | 1.4988 | 255 | 295 | 540 to 740 | 30 | 20 | 60 | 40 | 1 100 to 1 150 i | w, a | no | A | ||||||||||||
X8CrNiMoNb16-16 | 1.4981 | 215 | 255 | 530 to 690 | 35 | 22 | 100 | 60 | 1 050 to 1 100 | w,a | no | A | ||||||||||||
X10CrNiMoMnNbVB15-10-1 | 1.4982 | 220 | 270 | 540 to 740 | 35 | 30 | 100 | 60 | 1 050 to 1 150 | w, a | no | A | ||||||||||||
a For wall thicknesses greater than 50 mm the mechanical properties are subject to agreement at the time of enquiry and order. Option 8: Agreed mechanical properties for wall thicknesses greater than 50 mm apply. b Inspection and testing to be carried out are summarised in Table 15. c l = longitudinal; t = transverse. d The maximum temperatures are for guidance only. e w = water; a = air; cooling sufficiently rapid. f When tested according to EN ISO 3651-2 (Appropriate method, A or B or C, as indicated) up to the limit temperatures indicated in the last column of Table 10. g After solution annealing the grain size shall be 1 to 5 according to EN ISO 643. h After solution annealing the grain size according to EN ISO 643 shall be 1 to 5 for cold worked tube and 5 or coarser for hot extruded tube. |
||||||||||||||||||||||||
Table 8 – Mechanical properties for wall thicknesses up to 30 mm of austenitic-ferritic steels in the solution annealed condition (+AT) and information about intergranular corrosiona | ||||||||||||||||||||||||
Steel grade | Tensile properties at room temperature b | Impact properties b | Reference heat treatment conditions | Resistance to intergranular corrosion | ||||||||||||||||||||
Proof strength Rp0,2 min. | Tensile strength Rm | Elongation A min (%) | Minimum average absorbed energy KVJ | Solution temperature c | Cooling in d | e | Method in EN ISO 3651-2 | |||||||||||||||||
at RT | at -40 °C | |||||||||||||||||||||||
Steel name | Steel number | MPa | MPa | l | t | l | t | t | ||||||||||||||||
X2CrNiMoN22-5-3 | 1.4462 | 450 | 640 to 880 f | 22 | 22 | 120 | 90 | 40 | 1 020 to 1 100 | w, a | yes | B | ||||||||||||
X2CrNiMoSi18-5-3 | 1.4424 | 480 | 700 to 900 | 30 | 30 | 120 | 80 | – | 975 to 1 050 | w, a | yes | A | ||||||||||||
X2CrNiN23-4 | 1.4362 | 400 | 600 to 820 | 25 | 25 | 120 | 90 | 40 | 950 to 1 050 | w, a | yes | A | ||||||||||||
X2CrNiMoN25-7-4 | 1.441 | 550 | 800 to 1000 | 20 | 20 | 100 | 100 | 40 | 1 040 to 1 120 | w, a | yes | B or C | ||||||||||||
X2CrNiMoCuN25-6-3 | 1.4507 | 500 | 700 to 900 | 20 | 20 | 100 | 100 | 40 | 1 040 to 1 120 | w | yes | B | ||||||||||||
X2CrNiMoCuWN 25-7-4 | 1.4501 | 550 | 800 to 1 000 | 20 | 20 | 100 | 100 | 40 | 1 040 to 1 120 | w | yes | B or C | ||||||||||||
a Inspection and testing to be carried out are summarised in Table 15. b l = longitudinal; t = transverse. c The maximum temperatures are for guidance only. d w = water; a = air; cooling sufficiently rapid. e When tested according to EN ISO 3651-2 (Appropriate method, A or B or C, as indicated) up to the limit temperatures indicated in the last column of Table 11. f For cold finished and solution annealed tubes the maximum tensile strength is 920 MPa. |
||||||||||||||||||||||||
Table 9 – Minimum proof strength Rp0,2 and Rp1,0 at elevated temperatures for wall thicknesses up to 60 mm a of austenitic corrosion resisting steels in the solution annealed condition (+AT) and guideline for the limit temperature for intergranular corrosion (continued) | ||||||||||||||||||||||||
Steel grade | Rp0,2 , min Mpa at a temperature (°C) of | Rp1,0 , min Mpa at a temperature (°C) of | Limit temp.b °C | |||||||||||||||||||||
Steel name | Steel number | 50 | 100 | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 500 | 550 | 50 | 100 | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 500 | 550 | |
X2CrNi18-9 | 1.4307 | 165 | 145 | 130 | 118 | 108 | 100 | 94 | 89 | 85 | 81 | 80 | 200 | 180 | 160 | 145 | 135 | 127 | 121 | 116 | 112 | 109 | 108 | 350 |
X2CrNi19-11 | 1.4306 | 165 | 145 | 130 | 118 | 108 | 100 | 94 | 89 | 85 | 81 | 80 | 200 | 180 | 160 | 145 | 135 | 127 | 121 | 116 | 112 | 109 | 108 | 350 |
X2CrNiN18-10 | 1.4311 | 255 | 205 | 175 | 157 | 145 | 136 | 130 | 125 | 121 | 119 | 118 | 282 | 240 | 210 | 187 | 175 | 167 | 160 | 156 | 152 | 149 | 147 | 400 |
X5CrNi18-10 | 1.4301 | 180 | 155 | 140 | 127 | 118 | 110 | 104 | 98 | 95 | 92 | 90 | 218 | 190 | 170 | 155 | 145 | 135 | 129 | 125 | 122 | 120 | 120 | 300 |
X6CrNiTi18-10 (cold finish.) (hot finish.) |
1.4541 | 190 | 176 | 167 | 157 | 147 | 136 | 130 | 125 | 121 | 119 | 118 | 222 | 208 | 195 | 185 | 175 | 167 | 161 | 156 | 152 | 149 | 147 | 400 |
1.4541 | 162 | 147 | 132 | 118 | 108 | 100 | 94 | 89 | 85 | 81 | 80 | 201 | 181 | 162 | 147 | 137 | 127 | 121 | 116 | 112 | 109 | 108 | 400 | |
X6CrNiNb18-10 | 1.455 | 195 | 175 | 165 | 155 | 145 | 136 | 130 | 125 | 121 | 119 | 118 | 232 | 210 | 195 | 185 | 175 | 167 | 161 | 156 | 152 | 149 | 147 | 400 |
X1CrNi25-21 | 1.4335 | 170 | 150 | 140 | 130 | 120 | 115 | 110 | 105 | – | – | – | 200 | 180 | 170 | 160 | 150 | 140 | 135 | 130 | – | – | – | 400 |
X2CrNiMo17-12-2 | 1.4404 | 182 | 165 | 150 | 137 | 127 | 119 | 113 | 108 | 103 | 100 | 98 | 217 | 200 | 180 | 165 | 153 | 145 | 139 | 135 | 130 | 128 | 127 | 400 |
X5CrNiMo17-12-2 | 1.4401 | 196 | 175 | 158 | 145 | 135 | 127 | 120 | 115 | 112 | 110 | 108 | 230 | 210 | 190 | 175 | 165 | 155 | 150 | 145 | 141 | 139 | 137 | 300 |
X1CrNiMoN25-22-2 | 1.4466 | 230 | 195 | 170 | 160 | 150 | 140 | 135 | – | – | – | – | 262 | 225 | 205 | 190 | 180 | 170 | 165 | – | – | – | – | 400 |
X6CrNiMoTi17-12-2 (cold fin.) (hot fin.) |
1.4571 | 202 | 185 | 177 | 167 | 157 | 145 | 140 | 135 | 131 | 129 | 127 | 234 | 208 | 195 | 185 | 175 | 167 | 161 | 156 | 152 | 149 | 147 | 400 |
1.4571 | 182 | 166 | 152 | 137 | 127 | 118 | 113 | 108 | 103 | 100 | 98 | 201 | 181 | 162 | 147 | 137 | 127 | 121 | 116 | 112 | 109 | 108 | 400 | |
X6CrNiMoNb17-12-2 | 1.458 | 202 | 186 | 177 | 167 | 157 | 145 | 140 | 135 | 131 | 129 | 127 | 240 | 221 | 206 | 196 | 186 | 175 | 169 | 164 | 160 | 158 | 157 | 400 |
X2CrNiMoN17-13-3 | 1.4429 | 255 | 215 | 195 | 175 | 165 | 155 | 150 | 145 | 140 | 138 | 136 | 290 | 245 | 225 | 205 | 195 | 185 | 180 | 175 | 170 | 168 | 166 | 400 |
X3CrNiMo17-13-3 | 1.4436 | 195 | 175 | 158 | 145 | 135 | 127 | 120 | 115 | 112 | 110 | 108 | 228 | 210 | 190 | 175 | 165 | 155 | 150 | 145 | 141 | 139 | 137 | 300 |
X2CrNiMo18-14-3 | 1.4435 | 180 | 165 | 150 | 137 | 127 | 119 | 113 | 108 | 103 | 100 | 98 | 217 | 200 | 180 | 165 | 153 | 145 | 139 | 135 | 130 | 128 | 127 | 400 |
X2CrNiMoN17-13-5 | 1.4439 | 260 | 225 | 200 | 185 | 175 | 165 | 155 | 150 | – | – | – | 290 | 255 | 230 | 210 | 200 | 190 | 180 | 175 | – | – | – | 400 |
X1NiCrMoCu31-27-4 | 1.4563 | 210 | 190 | 175 | 160 | 155 | 150 | 145 | 135 | 125 | 120 | 115 | 240 | 220 | 205 | 190 | 185 | 180 | 175 | 165 | 155 | 150 | 146 | 550 |
X1NiCrMoCu25-20-5 | 1.4539 | 221 | 205 | 190 | 175 | 160 | 145 | 135 | 125 | 115 | 110 | 105 | 244 | 235 | 220 | 205 | 190 | 175 | 165 | 155 | 145 | 140 | 135 | 400 |
X1CrNiMoCuN20-18-7 | 1.4547 | 267 | 230 | 205 | 190 | 180 | 170 | 165 | 160 |